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Abstract

The nonlinear stability of an oblique mode propagating in a two-dimensional com-

pressible boundary layer is considered under the long wave-length approximation. The

growth rate of the wave is assumed to be small so that the ideas of unsteady nonlinear

critical layers can be applied. It is shown that the spatiai/temporal evolution of the mode

is governed by a pair of coupled unsteady nonlinear equations for the disturbance vorticity

and density. Expressions for the linear growth rate show clearly the effects of wall heating

and cooling, and in particular how heating destabilises the boundary layer for these long

wavelength inviscid modes at O(1) Mach numbers. A generalised expression for the linear

growth rate is obtained and is shown to compare very well for a range of frequencies and

wave-angles at moderate Mach numbers with full numerical solutions of the linear stability

problem. The numerical solution of the nonlinear unsteady critical layer problem using a

novel method based on Fourier decomposition and Chebychev collocation is discussed and

some results are presented.

1. Introduction

One of the more important contributions to the linear stability of compressible bound-

ary layers was the work of Lees & Lin (1946) who developed the inviscid theory and

identified the different types of modes which exist in regions of relative subsonic and su-

personic flow. This and subsequent modifications to the work to include viscous effects, is

extensively described in the reviews by Reshotko (1976), and Mack (1984,1986) who also

discusses the numerical results for the compressible linear stability problem. Recent work

has concentrated on developing a more systematic approach, based on the the triple-deck

type framework, and Smith(1989) discusses the lower- branch stability properties, whilst

Gajjar & Cole (1989), Gajjar (1990), Cowley & Hall (1990), Brown & Smith (1990) consider

the upper-branch and inviscid stability properties, with the last two papers concentrat-

ing more on the description of the acoustic and vorticity modes at high Mach numbers.

The nonlinear stability properties, particularly of the inviscid modes, has however received

scant attention, although exceptions include the paper by Goldstein & Wundrow (1990)

which extends the Cowley & Hall work to include nonlinearity and also the work of Gajjar

& Cole (1989,1992) who consider nonlinear neutral modes in compressible boundary lay-

ers, and Leib (1991) who has studied the evolution of modes in compressible shear layers.



One of the aims of this paper is to discuss the nonlinear evolution of the long wavelength

inviscid modes in compressible boundary layers.

It is now well known that the critical layer where the phase speed of the disturbance

wave is equal to the local flow velocity plays an important role in the stability of many shear

and boundary layer flows. The ideas of nonlinear critical layers were first put forward by

Benney & Begeron (1969) and Davies (1970) and they have been widely used in numerous

papers since then. An excellent review of the many different aspects and properties of

linear and nonlinear critical layers is given in the articles by Stewartson (1981) and Maslowe

(1986). Benney & Bergeron showed how the properties of the nonlinear critical layer could

be used to describe nonlinear neutral waves in parallel flows. This work has recently

been extended to compressible boundary layer flows by Gajjar & Cole (1989), (hereafter

referred to as I), Gajjar (1990), and Gajjar & Cole (1992), who obtain various results for

the nonlinear neutral frequencies and wavenumbers which depend on the amplitude of the

disturbance wave. All these results are based, however, on the underlying assumption that

the neutral modes exist and that the critical layer is of an equilibrium type. Although a

description of the nonlinear neutral structure is interesting, and provides a solution of the

compressible Navier-Stokes equations, of more iraport_ce is the question of whether the

assumed nonlinear neutral structure is stable and indeed attainable. This question and the

relevance of the equilibrium critical layer to the overall stability picture has so far not been

resolved and needs further consideration. In shear layers the far downstream asymptotic

structure of the non-equilibrium critical layer bears close resemblance to Benney-Bergeron

critical layer, although there are modifications stemming from unsteady effects and outer

diffusion layers, Goldstein & Hultgren (1988).

Studies of the spatial evolution of waves on shear flows and in which the critical layer

is of a non-equilibrium type have been conducted in a series of papers by Dr. Goldstein

and his group, see for example Goldstein & Leib (1988), Goldstein & ttultgren (1988),

Goldstein & Wundrow (1990). The nonlinearity studied in these papers is such that it

induces a fully unsteady nonlinear critical layer problem whereas in other instances with

weaker nonlinearity, the resulting evolution of the disturbance is described by an integro-

differential equation of the ttickerueU (1984) type, Goldstein & Leib (1990), Goldstein &

Choi (1989), Leib (1991).

These papers demonstrate that even though spatial equilibration can occur in some

instances, with the properties of a quasi-equilibrium critical layer coming into play, there

are important differences between the equilibrium a_d non-equilibrium type approaches,

see also Gajjar & Smith (1985). Comparisons of the theoretical predictions and experimen-

tal results for shear layers based on the latter approach show good agreement, Hultgren

(1992). Mankbadi (1992ab) had also made extensive comparisons with experiments of the

the incompressible weakly nonlinear theories for the Blasius boundary layer and his results
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give convindng quantitative evidence that the unsteady nonlinear critical layer theories do

indeed capture the early stages in the transition to turbulence of these flows.

Wu (1992) has studied the weakly nonlinear instability of Stokes layers using similar

ideas and also obtained a novel generalisation of the HickerneU integro-differential equation

by incorporating a weak spanwise dependence for the disturbance. Unsteady critical layer

analysis has also been applied to study the evolution of waves in stratified flows, Churilov

& Shukman (1988), and also in the flow over compliant surfaces, Gajjar (1991).

In this paper we consider the spatial/temporal evolution of an oblique mode propagat-

ing in a two-dimensional compressible boundary layer with non-insulated wall conditions.

In Part II of this paper Gajjar (1992) the extension of this work to the insulated case for

O(1) and also small Mach numbers is also described. In fact the generic problem there is

essentially the same as that obtained here and can be retrieved also by taking a limit of

the current problem. Long waves, based on the Rayleigh scalings, are considered and the

growth rates are assumed to be small so that the ideas of nonlinear critical layers can be

used. The mode is taken to grow slowly in the direction of propagation of the wave, and

the cross variations are taken to be small and negligible. The assumptions made imply

that the analysis here applies only to the evolution of the first mode, in the terminology

of Mack (1984). The higher modes have much larger phase speeds and stem from regions

of locally supersonic flow which require a modification to the present analysis.

In the following sections we analyse the disturbance quantities and obtain the gov-

erning nonlinear unsteady critical layer equations describing the evolution of the mode.

It is shown below that the evolution is described by a pair of coupled equations for the

disturbance vorticity and density, with the density acting as a source of the vorticity.

These equations are essentially the unsteady counterparts of those obtained in I. The nu-

merical solution of these equations using a novel method based on Fourier decomposition

in the spanwise direction and Chebychev collocation in the normal direction is described

also. The same notation and nondimensionalisation of I is used and in particular (z, y, z)

denote the streamwise, normal and spanwise non-dimensional coordinates, (u,v,w) the

corresponding velocities, t is the time, (p, p, T), are the nondimensional pressure, density

and temperature respectively. The Reynolds number R is taken to be large throughout,

Moo is the free-stream Mach number, and F is the ratio of specific heats. The basic flow is

taken to be a flat plate or pressure gradient boundary layer with wall heating and cooling,

see I also.

2. Problem Formulation

It is convenient to introduce Squire coordinates (_, 5) along and normal to the direction

of propagation of the wave, with

0 _ 0 h2 0 flh c9 ,
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0 .Ri 0 2 0 0

o
_00¢-' n2Rt(-"c- n_)b2'

and f = RI h(,_, +/3z-,_ch_),_ = R_h(,_z -/3z), and X = Rih2(,¢z + _z), with the
wavegrowing on the slow X scale. The scale f_ctor h, (h << 1) is introduced so that we
are consideringlong waves on the P,_yleigh sealings. The growth rates are thus of O(h 2).

Also c is the phase speed of the wave, o" is taken to be real and a - cos 0,/3 -- sin 0, where

flis the _ertion ofpropagationof the wave.Withrespectto the Squirecoordinateswe
havethe correspondingvelocities,_= ,_, +/31o,,_= -/3,,+ ,_10.Thebasic_lowis takento
a two-dimensional boundary layer flow with

(_,_,w) = (v_Cz,Y),O(R-_),O),p=pn = l/r_,

y = Ts(_, r), p = ps(,,r) = 1ITs,,

where y = R-_ Y and we assume also that

UB,pv,'--' 1 as Y --, oo,

Un'._aY+_2Y _+... as Y--,O+,

pI3 ".' Ro + RaY +... as Y-,O+,

Tv ,,, So + Sa Y + . . . as Y-,O+.

Small disturbances of size 6 axe introduced and expansions for the disturbance quantities

axe considered in each of the regions, see Fig. 1. The disturbance size/; = O(h s) has been

anticipated below to allow the nonlinearity and unsteadiness to appear in the critical layer.

Firstly in the region Y = O(1) the various flow quantities expand as

= a0"B+ h3aa+ h4_2+...,

v = h'6a + h5_2,

= -/3ETB + hs_,a + h4ff,2 +...,

P = PB + h4/_1 -!- hap2 -{- ...,

p = p_ + h3_a+ h4_2+...,

(2.1)

and these axe taken to be independent of g to this order. Substitution of (2.1) into the

Navier- Stokes equations yidds at leading order the solutions,
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_1 = Ao_VBy, _1 =-a;ioWs, _1 = #1,

_1 = A0pBr, _ =-;AoVBy, (2.2)

where Ao = ;_(X),"* + c.c. , Pl = b(X)e"_ + c.,.and _i, b axe slowlyvarying _plit_de
functions, and 7 is the wavenumber of the oblique mode. At the next order the solutions

#I_YUB
CX # pBU_ rpB '

# Y

_ = i',- Jo ,_VBpB_,dr, (2.3)

and

FpB '

axe obtained axtd A1, ]51 axe unknown function of _ and X.

In region Z2 where Y = bY', the properties of the basic flow in (2.1) and the solutions

(2.2),(2.3) imply the expansions

= a(h,klY + h2A2 _r2) + h3ul + h4u2 +...,

v = hSvl + h%2 +...,

tO = -_(hA1 _r + h2A2 _r2) + h3wl + hgw2 +...,

P= ps + h4pl + hSp2 +...,

p = Ro + hR1Y + h2R2_ 7_2 + h3pl + h4p2 + ....

Substituting into the equations and solving gives

vl = -aAocAl?,
3;_?;io R1;h #Ao

o'ul, - aculx aAIA2Ao_ plcRlc

v2 = aA1 A_ [02- c2] + 2 2
aR°A1 (2.4)

(p_ + plx) _Ao_I2_2 R_Ro_oA_ Z -*-_-_+ _]O[L_ I01+ ¢±1,

where _7 = ()h_" - c). In the above we have anticipated the condition that the normal

velocity is zero at the wall which leads to relation (from the solution for v_) that

pl = Ro)q a_c_to.
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These solutions show that the density, temperature and spanwise fluctuations become

algebraically singular in the critical layer. The _+ terms are jump conditions arising from

the continuation across the critical layer at f/ - 0. Before discussing the critical layer

equations it is convenient to consider first the outer potential flow region Z3 and derive

the amplitude equation describing the evolution of the mode.

In region Z3 with Y = l_/h we have the expansions

= a+h4_1 +hs_ +...,

v = h4Oz + h5_2 +...,

t_ ---- --_ + h4@l + hS@a +...,

p= 1+h4_1 +...,

p = ps + h4gl + hS_ + ....

When substituted into the Navier-Stokes equations the equation for l_a is just the Prandtl-

Glauert equation which yields

ha (2.5)
,_a= P1oe-'Yn_'ei'_e, _1 = i'-'a'

where real quantities are assumed, P10 is an unknown function of X and

f]---(1- _,,2 ); = (1- suL)t.

At the next order the e_t¢ component of 1_ , say P2a is given by

P21 ---- e7(1 - fl2)plo_,.e_.rnf. + _,,P_oxil_e-,.tn_ +/_2ae-_,n_"
2ft

and the e i_ componenet of #2, V21 satisfies

_(1 + n2)p_0 + _ftPn.
ia_TV2_ I_'=o = 2fl

(2.o)

3. Derivation of the amplitude equation

The amplitude equation is derived by matching between the different regions and also

imposing the condition that the normal velocity is zero. At leading order from (2.4) and

(2.5) we get

P_0 = a_XaARoc = _.7a2/]" (3.1)
ft
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which gives the dispersionrelation

= ,_)qRoc -- A1Roc(1 - cos20M_)§. (3.2)

Denoting the e i7_ components of/52,.41,,40¢ + by ]521,/tll and/i¢_ respectively matching

of the normal velocitiesand pressure between Z1 and Z3 gives using (2.3)the relations

V2a [,f,-=o = _T Plola + iTacA-. +All,
ot

P,.1= P2_- ,;7_2/',-, (3.3)

where

9f0°° 1 1 1 Ra
2A2

+ -x--)- 1]dy,
A1

and

I2 = (pBv_- 1)du.

Matching the normal velocities in Z1 and Z2 gives from (2.3-2.4),

iTPl°A2aRoA_ ictc7 7t ( 2_-_ R1 2iA2 aTc/].+ Al1_1= _ + _)_1¢_++ (3.4)
A1

Next setting the second order component of the normal velocity in Z2 to zero at the wall

gives from (2.4),

where

iTac2(2A2 RaiDIA - _cAx 1 PIox i7 f_21 + + A O. (3.5)
Ro_o_l Ro,_l _ " _1 _ )¢_ =

D1 = 7a + aR0_A--------_ ( ) + --_-1 ,-_T + )L_ tcl.

Finally eliminating 1521,J111 using (2.6), (3.1-3.5)leads to the amplitude equation

iTAac'

AI AI

where the Di are given by

R1

+ _)(¢_+- ¢;) = 0, (3.6)

D2 = c7(12_+ _2)(_ )-_3f_a2I_ +72a_c + ")':_I1(-_ "°)'

_ _R0 ( )1,
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and

D4 = Dz Ro_'o_z Ds.

Note that D4 is a real quantity.

The jump conditions (¢+ -_') axe determined from the properties of the critics] layer

and this is considered next.

4. The critics] layer equations

Expansions for the critical layer follow readily from the solutions and expansions in

Z2. In the critical layer with Y - _ + h_r/, we have

A:_c2 't'1
'_ = °t[hc+ h2(_z"/+ A_ '_+h3Uz +h'U2 +...,

v = hSVo + hSVz + hTVz +...,

= -_hc + h 2W_ +...,

P = PB + h4Pz + haP2 +...,

/h + h2_'1 + ....

Substitution into the equations shows that the pressure is the same as outside the critical

layer. The leading order solution for the normal velocity yields

R0a),zV0 = -Ply.

The first nontrivial solutions lead to the critical layer equations

RJ '

where the Q = U2. and the operator L is defined by

A2c2 _)_ _-=_-0 0 0
_ _ o_+ _oz + v°_"

In order to match with the solutions outside we need

_ ~ R_ + 2R_R_(L,_) +...,
Az_7

_2_2 __ -._, ~ 2,,_,_ + _ , _ + )R,(A,',_) +..., (4).)
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as r/_ -i-oo. Here Re denotes the real part. Hence the evolution of the mode is governed

by the solution of the equations (4.1) together with the amplitude equation (3.6). Using

(4.2) the amplitude equation can be written in the form

iTZc f_ f: (_ze-i'Y_ drld_ = O. (4.3)iD4A - 2ac_,x 2---_I Jo

The D, term in (3.9) and (4.3) gives a correction to the wavenumber and can be in effect

be removed by redefining _, and is thus set to zero. Note that this also fixes a and hence

the correction to the frequency.

A more standard form of the equations can be obtained by renormalising with the

scMJngs
._2 C2 0"

Xlr/+ )_ a -- )hd_Z,

7rl = Rld_H, X= c f(- f_o,
$_Td_

7_ = _" + _0, _i = d;a_ -_o, O_ = d_Q,

where

Rx 2cd; ) ]+ =( ,

d_ = 2acd_ 2_2 _oo(-ff + ),

tO give

OQ OQ _ Re(iAeie. ) OQ = JRe(iAeq. OHo£ + z

OH OH OH

+ z_-_ - Re(iAe ic)_-_ = 0.

Also the boundary conditions (4.2) and the amplitude equation (4.3) reduce to

(4.4ab)

Q,,o(1-J)Z+
Re(Aei_" )

Z
+ ... as Z _ -I-co,

H_Z+
R¢(Aeic )

Z
+... as Z _ 4-00, (4.5)
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and

A_=--lriff*/5_ Qe -_" d_* dZ.

The constants ._'0,_0 can be chosen to match upstream conditions and A --,

upstream ( A" --* -c_), where the scaled linear growth rate is now 7r.

The problem (4.3-4.6) is similar to that obtained by Goldstein & Wundrow (1990) in

their investigation of the stability of hypersonic boundary layers. Note that viscous effects

have been neglected above which means that the scale factor h is such that h >> O(R-_ ).

If h = O(R-_ ) (4.4) is modified to

8H 82Q 82H

L(Q) "- JRe(iAe'e*)_'_ + %_-_ + 7, OZ 2 ,

82]-I

LCn)=

where the operator T. is defined by

0 O _ Re(iAei_. )0_Z- +z 7:

and the parameters %,7a,7, are dependent on the viscosity law used. With the inclusion

of viscosity the wavenumbers are in effect O(R_ ). We also have

_fc --"

So ,(So)R-l h-T
7aAld_S , 7,_= 7c/Pr,

7e = 7d" _,_ 1),

(4.8)

where Pr is the (constant) Prandtl number and p(T) is the viscosity law. The properties

of the steady state or equilibrium version of (4.7) with 7, = 0 are discussed by Gajjar &

Cole (1989).

It can be seen from the above scalings and (4.8) that as far as the oblique-wave is

concerned, the 0 dependence can be scaled out of the inviscid problem, but not for the

viscous problem. In fact the more oblique the wave the larger the effective viscosity for

fixed values of the other parameters.

For an insulated flat plate boundary layer the same normalized problem (4.4) is ob-

tained, although the J parameter is the limit of that given here as R1 tends to zero, see

Gajjar (1992). We note also that Wundrow (1989) has obtained equations similar to (4.7)

in his study of the stability of compressible mixing layers and he presents several numerical

result s.
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Linear growth rate.

For the linear problem the standard jump conditions of ilr across the critical layer

when substituted into (3.6) determines the linear growth rate as

7cr (2),2 R1) (4.9)= + R0"

A more useful form for the growth rate, wavenumber and frequency can be obtained

by first recasting the various expression in unscaled form i.e. without the h factors present.

From the multiple scaling used it can be seen that the effective wavenumber, frequency,

and growth rate are given by

wavenumber: R} 7. = R] (Th +...),

growth rate: R] _;. - R{ (_;,.h 2 +...),

frequency: R½ w. - R] (7h2c cos 0 +...),

phase-speed: c. =
_. COS 0 "

For the flat plate boundary layer flow, taking the Prandtl number to be unity, the

basic flow is given by in Dorodnitsyn-Howarth variables,

_0 Y
UB(z,Y) = f'(r/), (2z)_r/= pBdY

where f(rt) satisfies the equation

(I_(TB)pBf")' + ff" =0, f(O)= f'(0)= 0,f'(oo)- 1,

and

l__-- TB = (1 -- tb)UB + tb + - 1)M_(tb + UB)(1 -- UB).

.ql

ps

Here t_ is related to the wall temperature Tw by

1 2
Tw=(1 +  M o(r - 1))t_

and i_(Ts) is the viscosity law. In particular t, = 1 corresponds to the case for insulated

walls.

The above asymptotic expressions for the wavenumber (3.2) and growth rate (4.9)

thus reduce to

7"2 _ c0,R_f"(O)v_cos 0 (1 - M_ cos 2 O)§ , (4.10)

_o,_" 1 - tb ,zT'. (4.11a)t¢. = ---- 1+

cos 0 _ 2_(TB)PB ,7=o

The expressions (4.10), (4.11a) give the leading terms in the asymptotic expansion for the

wavenumber and growth rate in terms of the frequency in this long wavelength approxi-

mation. It is seen that for heated walls, with tb > 1 the growth rate is positive and the
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growth rate increases with increasing wall heating. Also the above expression shows that

for fixed frequencies the oblique waves have larger growth rates than the 2D modes.

Clearly when t b -" 1 i.e for the insulated case, the growth rate reduces to O(h_). The

insulated case is considered in Part II of this paper Gajjar (1992), where it is shown that

for O(1) Mach numbers, the growth rate term is given by

d(_(T{m)OS)TT,_
Irw,2(F- 1)M_ dTs -" | . (4.11b)

= TwcoO0r. 1+ 2.(rB)pB ].=0

Further when the Mach number is much smaller of O(h} ) then the growth rate reduces to

O(h 4) and the A4 contribution comes into play. In this case to. above is modified to

_, = _r_,2 (P- 1)M_ 1 + 2,(TB)PB ) -- 4(p(TB)PB)f,(O)2 (4.11c)
cos 2 07. Tw ,7=0

The above expressions taken together show that for long waves, for insulated or isothermal

walls, a generalised expression for the growth rate asymptotically valid to much higher

order is

w,r cos 0 D(pB DUB) (4.12a)I¢, = 2DU_pB

where D - d/dY and pB,DUB, D(pBDUB) are evaluated at Y = Yc. The expression

(4.!2a) reduces to (4.11) by expanding the various quantities in (4.12a) and noting that

for small c,, Yc -" c,/A1 to a good approximation. For neutral modes (4.11c) agrees with

that given in I.

From (3.2) a leading order expression for the frequency is given by

2 ODUBPB(1 cos 20M_)].OJ, -- C. COS (4.12b)

The growth rates as computed from (4.11), (4.12a) are compared with numerically

computed values from the solution of the linear compressible Rayleigh problem* and the
T3/2

results are shown in Figures 2-4. The Sutherland viscosity law p(T) - (0.5 + T) together

with F --- 1.4 was used in these comparisons. The growth rates are plotted against the

phase-speed because, for fixed frequencies the phase-speed as computed from (4.12b) would

not be particularly accurate as (4.12b) is derived from just the leading order expression

for the wavenumber. Using the phase-speed as a parameter and computing the other

quantities from the various expressions written m terms of c, gives a much more meaningful

comparison. It is seen, Fig. 2(a-d), that for the non-insulated case whereas the formal

* The author would like to thank Dr. L. Hultgren for providing the code used in the

computation of the inviscid spatial eigenvalues.

12



leading order asymptote (4.11a) works well only for low Mach numbers and very low

frequencies, the generalised expression give excellent agreement for a range of frequencies

and oblique angles upto moderately supersonic Mach numbers. Figures 3(a-e) show the

comparisons for the insulated case also. The expression (4.11c) and the generalised form

(4.12a) again give excellent- agreement with the full solutions for the same range of Mach

numbers. For increasing Mach numbers the critical layer moves away from the wall and

the assumptions used in deriving (4.11), (4.12a) become less valid. Comparisons of the

asymptotic expression for the wavenumber against numerically computed values in Figures

4(a-f) show that the leading order asympt0te works well only for Small c. and further terms

would need to be incorporated for a better comparison.

5. Numerical solution.

The method used to solve (4.5-4.7) is different from that used previously and is de-

scribed below. The method was developed so that the calculations could be carried on

the AMT DAP-510 machine which is a massively parallel SIMD system comprising 1024

processors arranged in a 32 by 32 matrix. Since the individual processors of this machine

are relatively slow, the machine is most efllcient only when the underlying algorithm is

highly parallel a feature of the current method.

The vorticity Q and density 1"I were decomposed into individual Fourier modes by

writing
1

Q = (1 - J)Z + (_ _ Q,,e '"c + c.c),
0

O0

1

n= z
0

to give a se_ of equations for the Q,_, H_, similar to those given in Goldstein & Hultgren

(1988). The system was truncated to solve for (N + 1) Fourier modes and a predictor

correetor scheme was used to advance in time. The resulting equations at a particular

time level (j + 1) are then of the form

Q_+I + ikZQ_ +a - 7cQ i+'l,zz= rk, (5.1)

for each Fourier mode Qk, (k = 0, ..., N) and the nonlinear contributions are contained

in the rk term on the right hand side. These were then solved using Chebychev collocation,

by first mapping the infinite interval into [-1,1] with the transformation

z = 2y/¢7- u2,
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and writing
M

I----0

to give from (5.1) a set of linear equations for the Chebychev coefllceints a_ k). The inverses

of the coefficent matrices were pre_computed and stored, and the a_ h) were obtained by

doing matrix-vector multiplications for each Fourier mode. The method is thus fully vec-

torizable/parallelizable and suitable for massively parallel systems like the AMT DAP-510.

Note that since the infinite region is mapped into the fmlte region [-1,1] the Haynes

(1985) procedure does not need to be used. Another advantage of the method is that full

spectral accuracy in _* and Z is obtained. As described above the method requires the

pre-comput ation and storage of ( N q- 1) complex ( M q- 1) by (M q- 1) matrices, since as (5.1)

shows the differential operator involves an explicit dependence on k with the ikZ term. A

modification of the method was used to avoid the large storage problems by writing (5.1)

in the form

Q_+I +iNZQ_+I ~ oi+1 --i(N k)ZQk + rk-- Ie'w kZZ -- •

This worked quite well in practice.

One final point is the evaluation of the integral in the scaled amplitude equation

A_¢ = -4 fco Q1 dZ. (5.2)
J-co

With the mapping the integral becomes

and was evaluated using Gaussian quadrature with the Chebychev poylnomials as basis

functions. The quadrature points qj - cos((2_--_)'_), j = 1,...,n were used in the eval-

uation of the integral as this avoids difficulties at the endpoints y - +1. This too can be

implemented quite efficiently as a matrix vector multiplication.

6. Results and discussion

The numerical method was firsttested by computing some testcases of the Goldstein

& Hultgren (1988) problem for shear layers.( This corresponds to taking H = 0,J = 0 in
U dA

(4.7) together with an additional term _-d-_ on the righthand side of (4.7a), see equation

(3.16) of Goldstein _z Hultgren (1988)). Some sample results are shown in Figures 5(a-

d) and these are in excellent agreement with those of Goldstein & Hultgren (1988) and

Goldstein _z Leib (1988). It was found necessary to use a large number of Chebychev modes

in the normal direction, typically 150 modes, together with very small timesteps, especially

for the inviscid cases, in order to reproduce the results. One reason for this is that as the
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disturbance evolves downstream, the vorticity develops into the familiar cat's eyes pattern

and therefore many modes are required to resolve the very thin shear layers which form.

The calculations were quite sensitive to the accurate computation of the integral in (5.2)

and here 120 modes were needed for the later stages of the evolution of the disturbance.

Some results for the current problem (4.7) are shown in Figures 6-7. To reduce the

number of parameters in (4.7) the Prandtl number was taken to be unity and the Chapman

viscosity law was used giving 7_ = 0. For J zero or small and positive, Figures 6(a-d), the

results are similar to those of the shear layer calculations, Figure 5, see also Goldstein &

Hultgren (1988). The growth rate of the wave follows the linear value closely and then

decreases as the nonlinear terms become more dominant. The J -- 0 case is also a special

case of that arising in the instability of the flow over compliant surfaces, Gajjar(1991). In

Figure 6d we show the effect of inputting incorrect initial conditions. The growth rate after

rapid oscillations settles down to its correct linear value. For larger values of J positive,

Figure 7 the growth rate decreases initially from the linear value but far downstream this

is reversed and very large fluctuations are present. The effect of viscosity can be seen in

Figures 7 which show that the smaller the viscosity parameter "y_ the greater the effect on

the amplitude in the nonlinear regime. In figure with 7c = 1 the disturbance reaches a

large amplitude and then settles down with small oscillations about this amplitude. For a

smaller value of 7_ = 0.5, in Figure 7(c,d) it is seen that after reaching a peak amplitude

the effect of nonlinearity and the forcing from the density causes very large fluctuations

in the amplitude. Near _" = 3 the amplitude drops rapidly and then increases again with

the decrease/increase taking place within a short X-scale.

The computations in Figures 6,7 do not go far enough in ._ to be able to ascertain

what the the limiting properties of the downstream evolution are, although judging from

the work of Goldstein & Hultgren (1989), it is expected that the properties of equilibrium

compressible critical layers as dicusssed in Gajjar & Cole (1989) do come into play at

some stage with outer diffusion layers also present. This however requires further analysis

and more extensive numerical computations of the nonlinear problem. The nonlinear

calculations require considerable resources, especially the computations with small viscosity

where very small timesteps are necessary to allow a stable calculation.
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Z1 Y=O(1)

Z2 Y=O(h)

Figure 1 A sketch showing the regions gl-gS.
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Figures 2(a-d) Comparisons of the imaginary part of the waveneumber 7, versus the

phase speed c, from the full numerical solutions of the linear Rayleigh problem (solid

line), with asymptotic results, see the text. The thicker dashed line is the generalised

expression (4.12a), the thinner dashed line the asymptote (4.11a) for the non-insulated

case. The parameter tb = 1.1. M = Moo is the Mach number and 6 the oblique angle.

19



M=0.5 tb=l. d=O

2.50E-05 ............................................. •............................................................... i!"

2.ooE-o5-._....................._....................i....................__...............-............./'i

,._o_-o_-i.....................!....................t....................i.....................i........./_i

0.00 0.02 0.04 0.06 0.08 O. 10

C

Figure 3a

M--0.5 tb=l. _1=45

_E

2o50E-05

2.00E-05

1.50E-05

1.00E-05

5.00E-06

O.

-5.00E-06

0.00

I!
J_

-.I .................................................................................................. 7"i""

I
I

...................................................................................................../"i

-.! ........................................ <..................... _..................... >................... :.-.

-.i........................................_-....................;.....................;...................;....

0.02 0.04 0.06 0.08 O. 10

C

Figure 3b

2O



M=0.9 tb=1. 0=0

oooo.I...................................................................................................i;....
,:/.'

0.0003 -.-_..................-_..................T...................:.-.................. _...................i_ ........
_ _ _ i _/__'

oooo_.i...................i..................i..................i..................i.....................

oooool__ ........................._- .......
-o.ooo,v.._'__._{ ..............._ ............_...........

I_ __ ,
0.00 0.05 0.10 0.15 0.20 0.25

¢

Figure 3¢

M=1.5 tb=l. "#=65

li
I

0.020 ......................................._.................................................................i......
I
I

, I i
o.o,5 .......................................................................................................:'T

I
/

.....................................................................................................I...LL
/ "_

/ ;' i

il//_'i .......i°°°5 -i .................i.................i.................i.................i................; : :
i ! i :: i ! ." i
i i ! ! i z_,," i

o.oooF_..i .................i.................i..--_ _II-........i.
i _ ! i i _'.." .. •

i :- _",.:-.:..,.-ij- :: =:
Ii i i i i i i

0.0 0.1 0.2 0.3 0.4 0.5 0.6
C

0.010
_E

Figure 3d

21



v

_E

M-2.0 tb=l. "0=70

0.015 .............................................................................................................. ,

0.010

0.005

0.000

-0.005

-0.010

I
i I
i !

.................................................i......................................................./....
i I

I
I

" I

-": ";.............. T.............. _............... .-".............. ? .............. i ..............

i i i ,4..'-, i _,'"
i i _ :",,"'--. ! /-'_

- _..............._.............................i...............i......._ _S- ......i...............
: ; ; : : :
l I ,, I I I ,,, I I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

C

Figure 3e

Figures 3(a-e) As in Figure 2 except that the thinner dashed line is (4,12c) for the

insulated case. Also tb = 1.
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Figures 4(a-f) Comparisons of the reaJ part of the wavenumber _rom full numeri-

csl solutions of the Rayleigh problem (solid line) with the asymptotes (4.12b) (thicker

dashed llne) and (4.10) (thinner dash). Other parameter as in Figure 2.
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Figure 5(a-b) (a) A plot of the scaled *ave amplitude A and (b) the scaled growth

rate Re(A'/A), as a function of the the spatial coordinate X" for the Goldstein & Hult-

gren (1988) problem (see text) with _'c = 1 and U = 1.

Figure 5(c-d) As in Figure 5(a) except 7c = 0, and U = 3. In Fig. 5(d) the real and

imaginary parts of -A'/A are plotted.
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Figure 6(a-b) Solution of the nonlinear problem (4.7) and the figures show the evo-

lution of the scaled wave amplitude as a function of X. The different curves are for % =

10,1 and 0.5 with J = 0.

Figure 6(e-d) As in 'Figures 6(a-b) except J = 0.1,% = 1.
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